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Abstract

Subjects seated in a vertical axis rotation chair controlled
their rotational velocity by adjusting a potentiometer. Their
goal was to null out pseudorandom rotational perturbations in
order to remain perceptually stationary. Most subjects showed a

slow linear drift of velocity (a constant acceleration) to one

side when they were deprived of an earth-fixed visual reference.

The amplitude and direction of this drift can be considered a

measure of a static bias in a subject's perception of rotation.

The presence of a perceptual bias is consistent with a small,

constant imbalance of vestibular function which could be of either

central or peripheral origin. Deviations from perfect vestibulo-

ocular reflex (VOR) symmetry are also assumed to be related to

imbalances in either peripheral or central vestibular function.

we looked for correlations between perceptual bias and various

measures of vestibular reflex symmetry that might suggest a common

source for both reflexive and perceptual imbalances. No
correlations were found. Measurement errors could not account for

these results since repeated tests in the same subjects of both

perceptual bias and VOR symmetry were well correlated.

Key Words: Vestibular - Vestibulo-ocular reflex - Motion

perception - Manual control
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Introduction

Self-motion perception is derived from a variet Z of sensory

sources including visual, vestibular, somatosensory, and auditory

cues (1-3). Vestibular contributions to the perception of

rotation about an earth-vertical axis have been studied

extensively (4). When subjects are in an upright position,

rotations about an earth-vertical axis stimulate primarily the

horizontal semicircular canals. Signals from these canals are

processed in the central nervous system to produce the sensation

of rotation and to generate compensatory eye movements through the

vestibulo-ocular reflex (VOR) .

Because both self-motion perception and the VOR are thought to

rely on the same neural structures, attempts have been made to

correlate different properties of the VOR and self-motion

perception in order to verify this hypothesis. Various

investigators have quantified the dynamic properties of rotational

sensation following transient rotational motions (4,5) and during

sinusoidal oscillations (6-8). Their results have generally

confirmed a close correspondence between the dynamics of the VOR

and sensation. For example, these studies have identified a 10-20

s time constant that characterizes the time course of the decline

of sensation following a step change in rotational velocity. A

similar range of time constant values characterizes the dynamic

properties of VOR induced eye movements (9). The semicircular

canal time constant, however, is shorter than the VOR time

constant (in monkeys (I0, II), and presumably in humans). This

difference between canal and VOR time constants indicates the

participation and possible shared use of a central velocity

storage mechanism (12) in the processing of canal signals for both

sensation and the VOR.

Attempts to correlate other shared properties of the VOR and

self-motion perception have be_n limited by the methods for

measuring motion perception such as self reports of direction

changes and estimates of perceived velocity (4). To overcome

these limitations, Zacharias and Young (13) developed another

method for the quantification of rotational perception. In their

method, the subject has control over his rotational velocity, and

is instructed to null out rotational motion perturbations

introduced by the experimenter so that the subject perceives that

he is at zero velocity. This protocol places the subject in a

closed loop control system which we refer to as

feedback. This technique has the advantage that quantitative

estimates of both the static and dynamic properties of rotational

perception can be obtained.

The static properties of rotational perception are of

particular interest in that they may be related to measurable

characteristics of VOR responses. Static properties refer to the

long term, or DC responses of perceptual and reflex systems. For

rotational perception, a static response might correspond to a

sustained sensation of turning when in fact there is no motion.

For the VOR, static properties might be indicated by an average
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deviation of slow phase eye velocity from zero during stimulation
with a zero-mean rotational motion.

Using the perceptual feedback technique, static properties of

rotational perception are determined by measuring the average rate

of change of the subject's rotational velocity during a perceptual

feedback experiment. More specifically, Zacharias and Young found

that when subjects were deprived of visual motion cues, their

rotational velocity linearly increased throughout the course of

the stimulus presentation. This drift, a constant acceleration,

can be accounted for by the presence of a static, directional bias

in the subject's perception of his rotational velocity. The term

perceptual bias will refer to this static bias signal and the

associated drift in velocity during the perceptual feedback test.

Zacharias and Young speculated that the source of this bias is

an imbalance between the neural activity from the semicircular

canals in opposite ears. This hypothesis assumes that the central

nervous system acts as a simple comparator of activity from the

semicircular canals in opposite ears. Any difference in activity

between the two ears signals that the head is turning and is

accompanied by a perception of rotation. Because the semicircular

canals have the response characteristics of an accelerometer at

low frequencies of head motion, a subject who is controlling his

own rotation would have to accelerate in order to generate a

constant change in activity from the semicircular canals. The

subject would perceive himself to be at rest when the change in

activity generated by the constant acceleration canceled the

inherent difference in activity between the ears. The magnitude

of the acceleration would be proportional to the difference in

activity that exists when the subject is stationary.

It is often assumed that deviations from perfect VOR symmetry

are related to an imbalance between the two ears. This is clearly

the case in subjects following an acute unilateral loss of

vestibular function. These subjects have asymmetric VORs that

reflect the imbalance between the two ears (14-17). However, the

central nervous system is able to adapt to chronic imbalances in

vestibular function and to restore VOR symmetry to normal limits

(14,16,18). Similarly for motion perception, the spinning

sensation following an acute unilateral loss of vestibular

function gradually subsides even though the peripheral vestibular

asymmetry remains.

The adaptive mechanisms associated with the compensation for

unilateral deficits are presumed to be active in normal subjects.

These mechanisms are required to calibrate VOR gain and to adjust

for central and peripheral imbalances or changes in function that

occur over time due to aging and various disease processes.

Given the constant influence of the central adaptive systems,

it seems unlikely that VOR asymmetries and perceptual bias are

only related to imbalances of peripheral vestibular inputs.

Rather, a residual asymmetry measured in a normal subject could

potentially be influenced by the imperfect functioning of a

central adaptive system. Therefore residual VOR and perceptual

asymmetries may be related to peripheral asymmetries, to central
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asymmetries (associated with the central adaptive mechanism), or
to some combination of the two.

Is there a single symmetry adjustment mechanism which serves
both reflex and perceptual processes? If perceptual and reflex
measures of symmetry were correlated, this would suggest a common
source signal (perhaps the simple imbalance in activity between
the two ears) or at least covarying central mechanisms of symmetry
adjustment. Alternatively, uncorrelated perceptual and reflex
measures of symmetry would suggest more complex central processes
which might include separate symmetry adjustment mechanisms, or
separate sources of perceptual and VOR bias following a common
symmetry adjustment mechanism.

Methods

VOR and perceptual feedback tests were performed by 20 normal
human subjects, II male and 9 female, aged 22 to 44 years. The
test session lasted about 45 minutes, including a three minute
break in the middle of the session. The subjects were given the
option to stop the session at any time. Two of the 20 subjects
did not finish the test sequence due to motion sickness symptoms,
and their data are not included.

Subjects sat in a chair mounted on a 108 N.m velocity servo-
controlled motor (Contraves Goerz Corp, Model 824) and were
rotated about an earth-vertical axis. The axis of the chair was
at the center of a 2.1 m diameter circular room. The circular
room was used for the projection of visual stimuli during some of
the perceptual feedback tests. Three VOR tests were performed
(referred to as pre-test VOR), followed by twelve perceptual
feedback tests, and then the same three VOR tests (post-test VOR)
were repeated.

All procedures were in accordance with standards set by the
Institutional Review Board of Good Samaritan Hospital & Medical
Center.

VOR Test

Test Conditions. Subjects performed tests of VOR function with

eyes open in a dark room. Horizontal and vertical eye movements

were recorded by electrooculographic (EOG) techniques (bandwidth

DC to 80 Hz) using silver/silver chloride electrodes. Horizontal

EOG was recorded using bitemporal electrodes. Vertical EOG was

recorded by electrodes placed above and below the right eye. EOG

calibrations were made before and after each VOR test. Stimulus

delivery and data collection were controlled by computer (DEC LSI

11/73). Horizontal and vertical EOG, and the chair's tachometer

signal were digitized (12 bit resolution) and stored for later

analysis. Digitizing rates were 200 per second for the horizontal

EOG and 50 per second for the vertical EOG and the chair's

tachometer.

Stimuli for VOR tests consisted of single frequency sinusoidal

rotations at 0.05, 0.2, and 0.8 Hz with peak velocities of 60°/s.

The duration of the sine tests were i00 s (5 cycles) for 0.05 Hz,
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45 s (9 cycles) for 0.2 Hz, and 26.25 s (21 cycles) for 0.8 Hz.
The first cycle in each test was considered a transient response
and was not included in the data analysis. Subjects were given
verbal tasks throughout the VOR tests to maintain a constant level
of alertness. The tasks consisted of alphabetically naming
places, cars, foods, etc.

VOR Data Analysis. Figure 1 shows an example of the VOR data

analysis. Eye position data were differentiated to calculate eye

velocity. Fast phases of the nystagmus were identified and

eliminated using a method similar to that of Barnes (19). For

each stimulus cycle, a judgment was made about the quality of the

data and the analysis based on the consistency of eye movements

and on the success of the analysis in detecting fast phases. Poor

quality cycles were rejected. Curve fits were made to each cycle

of the remaining slow phase eye velocity data. The curve fits

were of the form:

r(t) = Br + Arsin(2Kf + Pr)

where Br is _ in °/s, Ar is response amplitude in °/s, Pr

is response phase in degrees, and f is the stimulus frequency in

Hz. Curve fit parameters were averaged to give final estimates of

VOR response parameters.
A directional nonlinearity of the VOR was quantified by

separately calculating the slopes of the slow phase eye velocity,

after removing the relative phase shift between stimulus and

response, versus stimulus velocity data for chair rotations to the

right and left. The slopes were calculated by a least squared

error fit of a two segment line to the data (Figure I, lower

right). One line segment was for positive and the other for

negative stimulus velocities. The two line segments were

constrained to intersect one another at zero stimulus velocity.

The two-part linear curve fit yielded three parameters: the

reflex gain for slow phase eye movements to the right, GR, the gain

for slow phase eye movements to the left, GL, and VQR offset

defined as the eye velocity at zero stimulus velocity. A measure

of VOR gain asymmetry was calculated by the formula 100*(GR-

GL)/(GR+GL).

VOR bias, offset, and gain asymmetry parameters are

collectively referred to as VOR symmetry measures. For a normal

population, the ranges of these symmetry measures are about ±6°/s

for VOR bias and offset, and ±15% for VOR gain asymmetry (20).

Since the VOR symmetry measures were highly correlated across

the three test frequencies, individual subject averages of the

symmetry measures were used for comparisons of pre- and post-test

results, and for comparisons of VOR symmetry measures with motion

perception results. For example, a subject's average pre-test VOR

bias refers to the average of the VOR bias obtained at 0.05, 0.2,

and 0.8 Hz from the VOR tests given prior to the perceptual

feedback tests. A subject's average VOR bias refers to the

average of VOR bias measures obtained both pre- and post-test at

all three test frequencies.
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Perceptual Feedback Tests

Test Conditions. Perceptual feedback tests immediately followed

the first three VOR tests. Auditory cues to motion were masked by

a white noise stimulus during all perceptual feedback tests. A

potentiometer (pot) was attached to the arm of the chair and

adjusted to rest comfortably at the subject's fingertips. The

knob on the pot did not provide any tactile cue for a zero

position. The subject was asked to continuously adjust the pot to

compensate for the experimenter-delivered disturbance signal in

order to make himself "feel stationary" throughout the test.

Figure 2 shows a schematic block diagram of the perceptual

feedback experiment.

Each subject was given a practice session just prior to the

perceptual feedback tests to become accustomed to the control of

rotation using the potentiometer. After the practice session,

twelve perceptual feedback tests were performed. The second,

third, and eighth tests were rotations in the dark. The fifth

test was a rotation with an earth-fixed, full field visual pattern

projected onto the wall of the circular room. This test served as
a control trial which tested the ability of the subject to

regulate his motion when both vestibular cues and earth-referenced

visual cues were available. The other eight tests involved

various visual and visual-vestibular interactions. A three minute

break was given immediately prior to the last rotation-in-the-dark

test. The results of rotations in the dark are of primary

interest to this paper, and will be referred to as perceptual

feedback tests i, 2, and 3 (numbered in the order in which they

occurred in the test sequence).

The disturbance signal for all the perceptual feedback tests

was a zero-mean pseudorandom signal consisting of the summation of

six discrete sinusoidal frequencies with a period of 81.92 s. The

eight frequencies were 0.037, 0.085, 0.183, 0.378, 0.720, and

1.550 Hz. The nominal amplitudes of the lowest two frequencies

were 7.8°/s, the middle two were 3.9°/s, and the highest two were

1.95°/s. If the subjects had not been able to adjust their

rotational motions, the highest instantaneous chair velocity would

have been about 25°/s. Two complete cycles of the pseudorandom

stimulus were given. The total duration of each perceptual

feedback test was 204.8 s which included 20.48 s of an earth-fixed

visual pattern before and after the 163.84 s presentation of the

pseudorandom stimulus.

Chair tachometer and potentiometer signals as well as

horizontal and vertical EOG were digitized (100/s) and stored for

later analysis.

Data Analysis. Perceptual feedback results were quantified by

calculating the average drift of the subject's rotational velocity

away from zero. The second cycle (last 81.92 s) of each test was

analyzed to determine the magnitude and direction of drift. The

second cycle was selected to avoid any possible transient effects

at the beginning of the test. The drift (in °/s2) was determined
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by calculating the average change of chair velocity with time
using a linear regression to the chair velocity data. By
convention, a negative sign indicated drift toward the subject's
left and a positive sign indicated drift to the right.

As demonstrated by Zacharias and Young, when the dynamic
properties of the various components in the feedback loop in
Figure 2 are taken into account, the presence of a drift in

rotational velocity away from zero is consistent with the presence

of a constant bias signal introduced into the loop.

Results

_OR Responses

VOR response parameters were consistent with those obtained

from a large normal population (20). In particular, a total of

540 VOR parameter values were measured in the 18 subjects. Only
18 of the 540 values (3.3%) were outside of the 95% confidence

limits previously established for a normal population.

In Figure 3 (left column), average pre-test and average post-

test measures of VOR bias, offset, and asymmetry are compared.

Similar results were obtained with comparisons of pre- and post-

test VOR symmetry measures at the individual test frequencies.

Correlations between pre-test and post-test VOR parameters ranged

from 0.58 to 0.87 (Table i) . All correlation coefficients in

Table 1 were individually significantly different from zero

(P<0.02). The lowest correlations were between pre-test and post-

test VOR gain asymmetry measures at 0.05 and at 0.2 Hz, and the

significance of these two correlations were lost when the P values

were adjusted to account for multiple comparisons (Bonferroni

adjustment, (21)).

The 95% confidence limits on the linear regressions between

pre- and post-test VOR symmetry measures were consistent with a

unity slope, suggesting that no significant VOR response changes

occurred during the experiment.

Perceptual Feedback

Figure 4 shows a subject's performance during two perceptual

feedback tests, one in the light within an earth-referenced visual

field and the other in the dark. If the subject had not exerted

control over his rotation by adjusting the potentiometer, the

subject's rotational velocity would have been equal to the

pseudorandom disturbance signal. For rotations in the light, the

time course of the potentiometer signal was approximately equal

and opposite to the disturbance signal. Since the subject's

rotational velocity was controlled by the sum of the disturbance

and potentiometer signals, the subject's actual rotational motion

(chair velocity) showed less variation than the disturbance

signal, and the subject's average velocity remained near zero

throughout the test. The same was true for the perceptual

feedback test in the dark except that there was a long term drift
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in the baseline of the potentiometer and chair velocity signals.

This drift showed an approximately linear trend with time.

Measurement of average baseline drift over the last half of

each perceptual feedback test quantified the presence of a static

bias in a subject's perception of his rotational motion. When

earth-referenced visual cues were available, drifts were small,

ranging from -0.029 to 0.015°/s 2 with a mean of -0.0015 and

standard deviation of 0.0092°/s 2. The mean of the absolute value

of drift was 0.0060°/s 2.

When perceptual feedback tests were performed in the dark,

drifts were larger in general than those recorded when earth-

referenced visual cues were available. The magnitude of drift

during 80% of the rotation-in-the-dark trials was larger than the

±2 s.d. range of drifts recorded when visual motion cues were

available. For the three rotation-in-the-dark tests, drifts

ranged from -0.33 to 0.57°/s 2 with a mean of -0.0083 and standard

deviation of 0.16°/s 2. The mean drift was not significantly

different from zero (P>0.7) indicating an equal tendency of

subjects to drift right and left. The variance of the

population's drift on the three rotation-in-the-dark tests was

significantly larger (P<0.001) than the variance when earth-
referenced visual cues were available. The mean of the absolute

value of drift was 0.11°/s 2.

Figure 3 (center column) compares repeated measures of drift

from the three rotation-in-the-dark tests. Correlations were

0.77, 0.47, and 0.57 for test 1 vs 2, 1 vs 3, and 2 vs 3,

respectively. All of these correlations were individually

significantly different from zero (P<0.05) although the 1 vs 3

correlation lost significance when the P values were corrected for

multiple correlations (21). However, statistical analysis showed

that one outlying point in the 1 vs 3 drift comparison (circled

in Figure 3, data from the same subject are also circled in other

two drift comparison plots) had a disproportionately large

influence on the 1 vs 3 regression analysis than did other points.

When this subject's data was excluded, the 1 vs 3 and 2 vs 3

correlations increased to 0.76 and 0.67, respectively, and the 1

vs 2 correlation was unchanged. All of these correlations were

significantly different from zero (P<0.01 with the Bonferroni

adjustment). No reason could be found to explain the presence of

this outlying point.

Correlations between VOR and Perceptual Feedback Results

Correlations between perceptual feedback drift and the various

measures of VOR symmetry were low (Table 2). For this comparison,

each subject's average drift was calculated from the three

rotation-in-the-dark perceptual feedback tests, and average VOR

parameters were calculated from pre- and post-test results.

Similar patterns of correlation were obtained from comparisons

between the three individual perceptual feedback drift measures,

and pre-test and post-test VOR parameters. The correlation

between drift and the 0.2 Hz VOR gain asymmetry measure is the

only individually significant correlation (P=0.027) in Table 2.
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Figure 3 (right column) shows average drift versus average VOR
symmetry measures. One subject's data (circled) had a
disproportionate influence on the regression analyses. When this
subject's data were not included, there were small, but
insignificant, negative correlations between drift and the various
average VOR symmetry measures (correlations in parentheses in
Table 2 do not include this outlying data point).

Discussion

Perceptual bias, measured by the drift in velocity during
perceptual feedback tests, appears to be unrelated to various
measures of VOR response symmetry. Because drift and VOR symmetry
measures were repeatable, measurement errors cannot account for
the poor correlations between them.

The only suggestion of a relation between perceptual bias and
VOR symmetry was the small negative correlation between drift and
VOR symmetry measures (after removing an outlying data point).
However, the sign of the correlation between drift and VOR
symmetry should be _ if an imbalance in function between
the semicircular canals in the two ears were responsible for both
perceptual bias and VOR symmetry. For example, if average
activity in the left canal were greater than the right, this would
signal a rotation to the left and would produce slow phase VOR eye
movements to the right (a positive VOR bias). Left canal activity
greater than the right would also produce a sensation of turning
to the left. Perceptual feedback tests would result in a positive
(to the right) drift. This constant acceleration to the right
would have the effect of increasing the average activity level of
the right canal and decreasing the left in order to achieve a
sensation of zero velocity rotation which occurs when right and
left canal activities are equal. Therefore a simple model that
presumes that rotational perception and VOR symmetry are related
to imbalances in activity between the two ears, predicts a
positive correlation between drift and VOR bias.

The fact that drift and VOR symmetry measures were not
positively correlated suggests that there are other influences on
motion perception bias and/or VOR symmetry. A candidate for the
source of this influence is the central adaptive mechanisms that
provide compensation for various lesions, and may play a role in
the processing and integration of vestibular signals with motion
cues from other sensory systems. The effect of these adaptive
mechanisms have been more extensively studied in the VOR system
than in motion perception. However it is known that the spinning
sensation associated with acute lesions of the peripheral
vestibular system declines with time even though the lesion
remains. This suggests that a central adaptive network exists for
perceptual as well as for reflex processes. The extent to which
the perceptual and reflex systems share the neural network
responsible for adaptation is not known.

Figure 5 shows a simple model which is consistent with our
results. This model is intended to represent the static or low
frequency behavior of pathways, rather than their dynamic



Rotational perception and VOR 3/23/91 Page ii

properties. The model does not exhaust all possibilities, but
rather illustrates a functional mechanism that could result in
uncorrelated measures of perceptual bias and VOR symmetry even
though there may be extensive sharing of central perceptual and
reflex pathways.

The model includes a single "central symmetry adjustment
mechanism" which acts upon a central neural network that receives
vestibular signals from the two ears. The purpose of this
mechanism is to compensate for long term imbalances in neural
activity from the two ears. Even in normal subjects this symmetry
compensation mechanism may not achieve perfect balance. The net
result would be a non-zero "residual bias" which could contribute
to both perceptual and VOR biases.

If the residual bias were the only contributor of static motion
information to both perceptual and VOR systems then perceptual
bias and VOR symmetry would be positively correlated. In order to
explain the experimental finding of uncorrelated drift and VOR
symmetry measures, the model postulates the presence of additional
separate sources of bias for the motion perception and VOR
systems. If these separate bias sources were not related to one
another, and at least one of them was large relative to the
residual bias, then there would be little or no correlation

between motion perception bias and vestibular reflex symmetry

measures.

If an individual were to lose vestibular function in one ear,

the central symmetry adjustment mechanism in the model would be

temporarily overwhelmed by the large peripheral bias. This would

produce a residual bias that would likely be large relative to the

separate central motion perception and reflex biases. Therefore

the expectation is that motion perception and reflex symmetry

measures would be positively correlated until the symmetry

adjustment mechanism was able to reduce the residual bias to a

small value. Once the residual bias were reduced to a small value

relative to either of the separate sources of bias, then

perceptual and reflex biases would again appear uncorrelated.

It is interesting to speculate on the reason why it may be

useful for the brain to control symmetry in different ways in the

motion perception and the VOR systems, and therefore on the reason

why separate central sources of perceptual and reflex bias may be

necessary. When a subject is in the dark, the VOR, whose purpose

is to promote clear vision during head movements, is of no

functional utility. The presence of a VOR bias in the dark

therefore would not disrupt the functional purpose of the VOR. In

contrast, a false perception of motion would have relevance to a

subject even in the dark. That is, a spinning sensation in the

dark would likely disrupt normal motor control. When visual cues

are absent, somatosensory signals probably play an important role

in providing the sensory information necessary for the motion

perception system to compensate for any biases which would

otherwise produce a spinning sensation. Although somatosensory

cues clearly influence VOR function (3,22), they are probably less

important than visual feedback in the control of VOR symmetry.

The different functional consequences associated with biases in
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perception and in the VOR provide a plausible reason for the need
of at least partially separate adaptive mechanisms.
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Table I. Correlation Coefficients: Pre-test vs. Post-test VOR
Measures (N=I8).

VOR Parameter 0.05 Hz 0.2 Hz 0.8 Hz 3 Frequency Average

Bias 0.79 0.79 0.86 0.87

Offset 0.81 0.76 0.73 0.85

Gain Asymmetry 0.58 0.58 0.71 0.64
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Table 2. Correlation Coefficients: Average Drift vs. Average of
Pre- and Post-test VOR Symmetry Measures*

VOR Parameter 0.05 Hz 0.2 Hz 0.8 Hz

Bias 0.I0 0.28 0.16

Offset 0.08 -0.01 0.25

Gain Asymmetry 0.13 0.52 0.01

3 Frequency Average

0.19 (-0.23)

0.Ii (-0.21)

0.32 (-0.16)

*N=I8 except for correlations in () where N=I7.



Rotational perception and VOR 3/23/91 Page 16

Figure Legends

I. Example of a VOR response to a sinusoidal rotational stimulus.
Upper trace: Slow phase eye velocity vs time from the last 4
cycles of a 0.05 Hz stimulus. The solid lines through the data
points are curve fits to each cycle of the response. Lower left:
Horizontal plane eye movements evoked during the first analyzed
cycle of the data. Vertical bars between the EOG and stimulus
velocity traces indicate the identified fast phases of nystagmus.
Lower right: Slow phase eye velocity vs stimulus velocity plot.
Solid lines are linear regression fits (constrained to intersect
at zero stimulus velocity) from which VOR offset and gain
asymmetry parameters are calculated. This particular data was
from the subject with the largest 0.05 Hz VOR bias recorded in
this study.

2. Block diagram of the perceptual feedback experiment.

3. Comparisons of VOR symmetry measures and perceptual feedback
test drift. Left column: Average pre-test vs average post-test
VOR symmetry measures. Center column: Comparison of repeated

measures of drift from perceptual feedback tests performed in the

dark. Right column: Comparison of average drift from perceptual

feedback tests performed in the dark and average VOR symmetry

measures. In the center and right columns, the circled points are

from an individual (a different individual in each column) whose

data had a disproportionate influence on at least one of the

linear regressions in that column. The regression results (with

95% confidence limits) do not include the circled points.

4. Examples of perceptual feedback test results showing the time

course of the pseudorandom disturbance signal (lower trace), the

subject's adjustment of the potentiometer, and the chair

rotational velocity during a rotation in the dark (upper) and with

a stationary earth-referenced visual field (center).

5. A model suggesting central nervous system mechanisms and
sources of bias which influence the static properties of motion

perception and vestibular reflexes.
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